
THE HODGE DECOMPOSITION

KELLER VANDEBOGERT

1. The Musical Isomorphisms and induced metrics

Given a smooth Riemannian manifold (X, g), TX will denote the

tangent bundle; T ∗X the cotangent bundle. The additional structure

provided by the metric g allows us to have some sense of ”duality”

between vector fields and differential forms.

Definition 1.1 (The Musical Isomorphisms). Let ω ∈ T ∗X. We have

an association ω 7→ ω] with

g(ω], Z) = ω(Z)

for Z ∈ TX. Similarly, given Z ∈ TX, we have the association Z 7→ Z[

with

Z[(Y ) = g(Z, Y )

for Y ∈ TX.

Proposition 1.2. The above maps constitute an isomorphism T ∗X ∼=

TX.

Proof. The above maps are inverses for each other, so this is a tautol-

ogy. �
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Suppose now that X is compact with metric g. Let Ωk
X,R denote the

vector bundle of k-forms over X. The musical isomorphisms give an

induced metric structure to Ωk
X,x, denoted (·, ·)x, by setting

(ω, σ)x := gx(ω
], σ])

By convention it is assumed that ω, σ are evaluated at x ∈ X. We can

now go further to define the L2 metric (·, ·)L2 on the space Ak(X) of

differential k-forms on X:

(ω, σ)L2 :=

ˆ
X

(ω, σ)vol

with (ω, σ) being the function on X defined by sending x 7→ (ω, σ)x.

2. The Hodge ∗ Operator

Suppose again that X is a compact smooth manifold with metric g,

and additionally assume dimX = n. We have an isomorphism

p :
n−k∧

ΩX,x → Hom
( k∧

ΩX,x,
n∧

ΩX,x

)
defined by p(ω)(σ) = σ ∧ ω. Similarly, we get another isomorphism

m :
k∧

ΩX,x → Hom
( k∧

ΩX,x,R
)

with m(Ω)(σ) = (ω, σ)x. Then, noting that
∧n ΩX,x

∼= R via the

isomorphism sending r ∈ R 7→ r · vol, consider the isomorphism

p−1 ◦m :
k∧

ΩX,x →
n−k∧

ΩX,x

Denote this map by ∗x; this should vary smoothly with x whenever g

is a smooth metric. By construction, we see that

p(∗xω)(σ) = σ ∧ ∗xω
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and, as p−1∗x = m, we also see

p−1(∗xω)(σ) = m(ω)(σ) = (ω, σ)vol

Definition 2.1. Let ∗ denote the isomorphism of vector bundles

∗ : Ωk
X,R → Ωn−k

X,R

constructed as above; this also induces a morphism on the smooth

sections of the above vector bundles

∗ : Ak(X)→ An−k(X)

This map is called the Hodge ∗ operator.

Proposition 2.2. For ω, σ ∈ Ak(X),

(ω, σ)L2 =

ˆ
X

α ∧ ∗β

Proof. By definition. �

3. Kähler Manifolds and Complexification of ∗

Definition 3.1. A Kähler Manifold is a symplectic manifold (X,ω)

equipped with a compatible almost complex structure J (that is, J2 =

−1). More precisely,

g(X, Y ) := ω(X, JY )

is a Riemannian metric.

The symplectic form ω may also be referred to as a Hermitian metric.

In an identical manner to before, we have an induced Hermitian metric

on the vector bundles.

Now, given real valued vector bundles, we may complexify by for-

mally tensoring with C (over R). The previously induced metrics are
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easily extended to Hermitian metrics on our complexified bundles Ωk
X,C.

The complexified Hodge ∗ now satisfies

(ω, σ)xvol = ω ∧ ∗σ

on each fiber, and by smoothness of our metric may be extended in a

smooth manner to Ωk
X,C.

4. Formal Adjoints and the Laplacian

We have a map

d : Ak−1(X)→ Ak

Where d denotes the standard exterior derivative. The introduction of

the L2 metric allows one to ask questions on the existence of adjoints;

that is, a map d∗ : Ak(X)→ Ak−1(X) satisfying

(dα, β)L2 = (α, d∗β)L2

Recall that for a complex manifold X, we have operators ∂ and ∂ with

d = ∂ + ∂. The adjoints for these operators have a particularly nice

form:

Proposition 4.1. With respect to the Hermitian L2 metric, we have

formal adjoints

∂∗ = − ∗ ∂∗

∂
∗

= − ∗ ∂∗

Proof. Recalling that ∂ and ∂ are graded derivations, we have:

(∂α, β)L2 =

ˆ
X

∂α ∧ ∗β

= −
ˆ
X

∂
(
α ∧ ∗β

)
−
ˆ
X

(−1)|α|α ∧ ∂∗β

= −
ˆ
X

(−1)|α|α ∧ ∗
(
∗−1∂ ∗ β

)
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Recall that ∗−1 = (−1)k(2n−k)∗, where in this case 2n−|α| = k. Whence

we see

−
ˆ
X

(−1)|α|α ∧ ∗
(
∗−1∂ ∗ β

)
=

ˆ
X

(−1)|α|α ∧ ∗
(
(−1)|α|∗∂ ∗ β

)
= −
ˆ
X

α ∧ ∗
(
∗∂ ∗ β

)
= (α,− ∗ ∂ ∗ β)L2

The computation for ∂ is essentially identical. �

Definition 4.2. For a Riemannian manifold (M, g), define the operator

∆d := d∗d+ dd∗

∆d is called the Laplacian.

One easily sees that a form is annihilated by the Laplacian if and

only if it is both closed and coclosed. More precisely,

Proposition 4.3. If X is compact,

(α,∆dα)L2 = (dα, dα)L2 + (d∗α, d∗α)L2

In particular, Ker ∆d = Ker d ∩Ker d∗.

Proof. By definition. �

Definition 4.4. Any form annihilated by the Laplacian ∆d is called a

harmonic form (or a ∆d-harmonic form, for clarity).

5. Elliptic Partial Differential Operators

Let E and F denote real or complex smooth vector bundles over a

manifold M . Let C∞ denote the constant sheaf assigning to a vector

bundle the smooth sections, and suppose that

P : C∞(E)→ C∞(F )
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is a R or C-linear morphism of sheaves.

Definition 5.1. P is a differential operator of order k if for open sets

U with coordinates {xi}ni=1 and trivializations

E|U ∼= U × Rp F |U ∼= U × Rq

we have that

P
(
(α1, . . . , αn)

)
= (β1, . . . , βn)

with

βi =
∑
I,j

PI,i,j
∂αj
∂xI

with PI,i,j ∈ C∞(M) and vanishing for |I| > k. More succinctly, in

multi-index notation one may write for u ∈ C∞(M,E),

Pu(x) =
∑
|α|6k

Pα(x)Dαu(x)

Essentially a differential operator is something that locally induces

a partial differential equation in the local coordinates of a given chart.

We can associate the differential operator P to a mapping σP such that

for x ∈M ,

σP (x,−) :T ∗X,x → Hom(Ex, Fx)

ξ 7→
∑
|α|=k

Pα(x)ξα

Definition 5.2. The map σP such that

σP (x,−) : T ∗X,x → Hom(Ex, Fx)

is called the symbol of the differential operator P .

Definition 5.3. A differential operator P is called elliptic if the map

ξ 7→ σP (x, ξ) is injective for all x ∈ X.
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Lemma 5.4. Let P : C∞(E) → C∞(F ). Then, the formal adjoint

P ∗ : C∞(F )→ C∞(E) exists, is unique, and satisfies

(α, Pβ)L2 = (P ∗α, β)L2 for all α ∈ C∞(F ), β ∈ C∞(E)

Proof. It is enough to define P ∗ locally, since we may get the global

result by merely extending by a partition of unity. Likewise, uniqueness

follows from noting that smooth functions with compact support are

dense in the L2 metric. Since P ∗ is defined locally, it is unique on

compactly supported functions.

Choose local coordinates x1, . . . , xn so that vol = γ(x)dx1∧· · ·∧dxn
with 0 < γ(x) ∈ C∞. Assume Suppα∩Supp β is relatively compact in

some open set Ω. Integration by parts yields:

(Pα, β)L2 =

ˆ
Ω

∑
|I|6k,i,j

PI,i,j(x)DIαj(x)βi(x)γ(x)dx

=

ˆ
Ω

αj(x)
∑
|I|6k,i,j

(−1)|I|γ−1(x)DI
(
γ(x)PI,i,j(x)βi(x)

)
γ(x)dx

In which case

P ∗β =
∑
|I|6k,i,j

(−1)|I|γ−1(x)DI
(
γ(x)PI,i,j(x)βi(x)

)
is a unique local adjoint; extending by a partition of unity subordinate

to some open cover, the result follows.

�

6. Results from Partial Differential Equations

In this section we will collect some standard results and proofs from

the theory of PDE’s in order to build up to one of the main results of

the paper. It is assumed the reader is familiar with Sobolev spaces and

the notation W k,p(Ω). As is standard, define Hk(Ω) := W k,2(Ω); we
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are still assuming E is a smooth vector bundle over a smooth compact

manifold M .

Lemma 6.1 (Sobolev’s Lemma). Let m ∈ N. For all m > k + n/2,

where rankE = n, we have a continuous inclusion

Hk(E) ↪→ Cm(E)

In particular, ⋂
k>0

Hk(E) = C∞(E)

Lemma 6.2 (Rellich-Kondrachov Compactness Theorem). Let 1 6

r <∞ and let j,m ∈ N with 0 6 j < m. If p > 1 satisfies

1

p
>
j

n
+

1

r
− m

n

then the embedding

Wm,r(E) ↪→ W j,p(E)

is compact. In particular, whenever m > j,

Hm(E) ↪→ Hj(E)

is compact.

Lemma 6.3 (Garding’s Inequality). Let P : C∞(E) → C∞(F ) be an

elliptic differential operator of degree k with rankE = rankF = n.

Suppose that P̃ is an extension P . Then, for all α ∈ H0(E) such that

P̃α ∈ Hm(F ),

α ∈ Hm+k(E)

and,

||α||Hm+k 6 C(m)
(
||P̃α||Hm + ||α||H0

)
for some constant C(m) depending only on m.
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Finally, we will need the following theorem from Functional Analysis.

In the below, BX denotes the closed unit ball of X.

Lemma 6.4 (Riesz’s Lemma). Suppose X is a Banach space and Y

is a proper closed subspace of X. Given any ε > 0, there exists some

x ∈ ∂BX such that d(x, Y ) > 1 − ε. Furthermore, if Y is finite-

dimensional, then x ∈ ∂BX can be chosen so that d(x, Y ) = 1.

As an immediate consequence of the above, we get

Corollary 6.5. If X is an infinite dimensional Banach space, then BX

is not compact.

7. The Finiteness Theorem

In this section we will present a fundamental theorem on finiteness

properties of elliptic differential operators. This theorem is essential

for the Hodge Decomposition.

Theorem 7.1. Let E and F be Hermitian vector bundles on a compact

manifold M with rankE = rankF = n.

Suppose P : C∞(E) → C∞(F ) is an elliptic differential operator of

degree k. Then,

(1) KerP is finite dimensional.

(2) P
(
C∞(E)

)
is closed and of finite codimension. Moreover, if P ∗

is the formal adjoint of P , there exists a decomposition

C∞(E) = KerP ⊕ P ∗
(
C∞(F )

)
Proof. We first see that for any α ∈ KerP , Garding’s inequality gives

that ||α||Hm+k 6 C(m)||α||H0 .
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By Sobolev’s Lemma we deduce that KerP must be closed in H0(E),

in which case we also see that ||α||Hm 6 C(0)||α||H0 . This implies

that the unit ball of KerP is contained in the C(0)-ball of Hm(E). By

the Rellich-Kondrachov compactness theorem, the inclusion of the unit

ball of KerP is a compact subset of H0(E). By the corollary of Riesz’s

Lemma, we conclude that this implies dim KerP < ∞, which proves

part (1). �

For the proof of (2), we will divide this up into separate lemmas for

sake of clarity.

Lemma 7.2. Let α ∈ KerP . For all ε > 0, there exists N ∈ N and a

set {β1, . . . , βN} ⊂ Hm+k(F ) such that

||α||H0 6 ε||α||Hm+k +
N∑
i=1

|〈α, βi〉H0 |

Proof. Let ε > 0 and α ∈ KerP . Choose elements β1, . . . , βN ∈ H0(F )

and consider the set

Vβj := {α ∈ Hm+k(F ) | ε||α||Hm+k +
N∑
i=1

|〈α, βi〉H0| 6 1}

This is relatively compact in H0(F ) since the closure is contained in

the unit ball of H0(F ), which is compact by the proof of (1). We also

have that ⋂
βi

Kβj = {0}

in which case we deduce that we may choose our βj to be contained

in the unit ball of H0(F ). Thus the βj satisfy the conditions of the

statement. �

Lemma 7.3. The extension P̃ of P has closed image P̃
(
Hm+k(E)

)
for

all m.
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Proof. Choose α ∈ KerP as before. By the previous lemma, given

ε > 0 we have the inequality (for suitably chosen βi)

||α||H0 6 ε||α||Hm+k +
N∑
i=1

|〈α, βi〉H0 |

Now, substitute the above into Garding’s inequality. We find:

(1− C(m)ε)||α||Hm+k 6 C(m)
(
||P̃α||Hm +

N∑
i=1

|〈α, βi〉H0|
)

Now define T := Span{β1, . . . , βN}⊥. If we set ε = 1/2C(m), the above

inequality yields

||α||Hm+k 6 2C(m)||P̃α||Hm for all α ∈ T

In which case we see that P̃ (T ) is closed. But then

P̃
(
Hm+k(E)

)
= P̃ (T ) + Span{P̃ (β1), . . . , P̃ (βN)}

is also closed, as desired. �

Finally, we may conclude the proof of the second statement in the

finiteness theorem.

Proof of statement (2). Now, for m = 0, by definition H0(E) = L2(E).

Since our smooth sections are dense in every Hm(E) and the image of

Hk(E) is closed, we see(
Hk(E)

)⊥
=
(
P
(
C∞(E)

)⊥
= Ker P̃ ∗

whence we deduce

H0(E) = P̃
(
Hk(E)

)
⊕Ker P̃ ∗

Note that the adjoint of any elliptic operator is also elliptic. By the

proof of statement (1), this implies that Ker P̃ ∗ is also finite dimen-

sional, so that Ker P̃ ∗ = KerP ∗ is contained in C∞(E). Applying
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Garding’s inequality, we then see

Hm(E) = P̃
(
Hm+k(E)

)
⊕KerP ∗

And, employing the second statement of Sobolev’s Lemma, we see

C∞(E) = P
(
C∞(E)

)
⊕KerP ∗

which completes the proof. �

8. Cohomology and Harmonic Forms

We begin with a simple proposition.

Proposition 8.1. The Laplacian operator ∆d is elliptic and self ad-

joint.

Proof. Self adjointness is trivial; ellipticity follows from the fact that

the Laplacian ∆d has symbol

σ∆d
(α)(ω) = −||α||2ω

where ||α||2 is equal to (α, α)x on fibers. �

Now, let (X, g) be a compact oriented Riemannian manifold; let

Ak(X) denote the smooth k-forms on X.

Theorem 8.2. Let Hk denote the space of ∆d-harmonic k-forms. The

natural map

Hk → Hk(X,R)

α 7→ [α]

is an isomorphism; the same holds for the map from complex harmonic

k-forms to Hk(X,C).
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Proof. The result of the previous section gives that

Ak(X) = Hk ⊕∆
(
Ak(X)

)
Choose β ∈ Ak(X) a closed form. Then, β = α + ∆γ for harmonic α;

since β is closed we deduce that d∗dγ must also be closed. However,

d∗dγ is clearly an element of Im d∗, so d∗dγ ∈ Ker d ∩ Im d∗ = {0}.

Whence

β = α + dd∗γ =⇒ [β] = [α]

giving surjectivity. Now assume β is both harmonic and exact. Since

Ker ∆d = Ker d ∩ Ker d∗, we deduce that β ∈ Ker d∗ ∩ Im d = {0},

whence injectivity follows. �

In an identical manner, the following result for Dolbeault cohomology

is proved:

Theorem 8.3. Let E be a Hermitian holomorphic vector bundle over

a complex manifold X equipped with a Hermitian metric. If H0,q(E) is

the space of harmonic forms of type (0, q), the natural map

H0,q(E)→ Hq(X, e)

α 7→ [α]

is an isomorphism.

Combining the above isomorphisms with the finite dimensionality

guaranteed by the result of the previous section, we get

Corollary 8.4. (1) If X is a compact manifold, then the cohomol-

ogy groups Hq(X,R) are finite dimensional.

(2) If X is a compact manifold, the cohomology groups Hq(X,E)

are finite dimensional for every holomorphic vector bundle E

over X.
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9. Kähler Identities and the Hodge Decomposition

Let X be a Kähler manifold with form ω. We can define the Lefschetz

operator

L :Ak(X)→ Ak+2(X)

α 7→ ω ∧ α
Let Λ denote the formal adjoint of L; we have

Proposition 9.1.

Λ = − ∗−1 L∗

Proof. Let α ∈ Ak(X), β ∈ Ak+2(X). Then,

(Lα, β)vol = ω ∧ α ∧ ∗β

= −α ∧ ∗
(
∗−1 L ∗ β

)
= (α,− ∗−1 L ∗ β)vol

�

Letting [·, ·] denote the commutator bracket, we also see

Proposition 9.2. We have the identities

[Λ, ∂] = −i∂∗ [Λ, ∂] = i∂
∗

Theorem 9.3. Let (X,ω) be a Kähler manifold, and let ∆d, ∆∂, and

∆∂ be the Laplacians associated to d, ∂, and ∂, respectively. We have

the relations

∆∂ = ∆∂ =
1

2
∆d

Proof. We have

∆d = (∂ + ∂)(∂∗ + ∂
∗
) + (∂∗ + ∂

∗
)(∂ + ∂)

= (∂ + ∂)(∂∗ − i[Λ, ∂]) + (∂∗ − i[Λ, ∂])(∂ + ∂)

= ∂∂∗ + i∂∂∗ + i∂∂Λ− i∂Λ∂ + ∂∗∂ + ∂∗∂ − iΛ∂∂ + i∂Λ∂
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Since ∂∗ = −[Λ, ∂],

∂∗∂ = −i∂Λ∂ = −∂∂∗

Whence

∆d = ∆∂ + i∂[Λ, ∂] + i[Λ, ∂]∂

∆∂ + ∂∂∗ + ∂∗∂

= 2∆∂

Similarly, we find

∆d = ∆∂ − i∂[Λ, ∂]− i∂[Λ, ∂]

= 2∆∂

�

Combining the above, we get a series of quick yet powerful corollaries.

Corollary 9.4. If X is Kähler, then

∆d

(
Ap,q(X)

)
⊂ Ap,q(X)

That is, ∆d is bihomogeneous.

Proof. Both ∆∂ and ∆∂ are bihomogeneous, so the previous result

yields the theorem. �

Corollary 9.5. If α ∈ Ak(X) is harmonic, then each component αp,q

is also harmonic.

Corollary 9.6. We have a direct sum decomposition

Hk =
⊕
p+q=k

Hp,q

where Hp,q denotes the set of harmonic (p, q) forms.

Corollary 9.7. We have a direct sum decomposition

Hk(X,C) =
⊕
p+q=k

Hp,q
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Proof. We already have that Hk ∼= Hk(X,C), and likewise for Hp,q ∼=

Hp,q. Employing the previous corollary yields the result. �

One may notice that the above corollary depends upon the choice

of symplectic form ω for our Kähler manifold X, since this is how our

Lefschetz operator is defined. In order for us to be able to refer to the

above as the Hodge Decomposition, we need the following:

Proposition 9.8. The decomposition

Hk(X,C) =
⊕
p+q=k

Hp,q

does not depend on the choice of Kähler metric.

Proof. Let Kp,q denote the subspace of all cohomology classes that may

be represented by a closed form of type (p, q). By definition, we have

that Hp,q ⊂ Kp,q. We proceed to show the reverse inclusion.

Let α be a closed (p, q) form. In view of 7.1 and 8.2, we may write

α = β + ∆γ uniquely with β harmonic. By bihomogeneity of the

Laplacian, both β and γ are also (p, q) forms. Since α is closed, we

deduce that d∗dγ = 0, in which case α = β + dd∗γ, so [α] = [β]. But

[β] ∈ Hp,q(X), in which case we see Kp,q = Hp,q(X).

Since Kp,q is defined independently of the choice of metric, we see

that Hp,q(X) also does not depend on the metric. Whence the above

decomposition is determined independent of the Kähler metric. �

Combining the above with the previous corollary, we have proved

the existence of the Hodge decomposition.
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Corollary 9.9 (Hodge Decomposition). Let (X,ω) be a Kähler mani-

fold. Then there exists a direct sum decomposition of homology groups

Hk(X,C) =
⊕
p+q=k

Hp,q

Moreover, this direct sum does not depend on the choice of metric ω.

Finally, as a final corollary we have the following:

Corollary 9.10 (∂∂ Lemma). Let (X,ω) be a Kähler manifold, and

suppose α is both ∂ and ∂ closed. If α is d, ∂, or ∂ exact, then there

exists γ such that α = ∂∂γ.

Proof. Merely use the decomposition guaranteed by the finiteness the-

orem. �
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